Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 56(Pt 4): 1267-1276, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555218

RESUMO

An interactive simulation of a transmission electron microscope (TEM) called TEMGYM Basic is developed here, which enables users to understand how to operate and control an electron beam without the need to access an instrument. TEMGYM Basic allows users to familiarize themselves with alignment procedures offline, reducing the time and money required to become a proficient TEM operator. In addition to teaching the basics of electron beam alignments, the software enables users to create bespoke microscope configurations and develop an understanding of how to operate the configurations without sitting at a microscope. TEMGYM Basic also creates static ray diagram figures for a given lens configuration. The available components include apertures, lenses, quadrupoles, deflectors and biprisms. The software design uses first-order ray transfer matrices to calculate ray paths through each electron microscope component, and the program is developed entirely in Python to facilitate compatibility with machine-learning packages for future exploration of automated control.

2.
Micron ; 169: 103450, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030084

RESUMO

A complete analysis including finite element method (FEM) calculation, focal length properties, and thirdorder geometric aberrations of the open-source electrostatic lens from the NanoMi project is presented. The analysis is carried out by the software TEMGYM Advanced, a free package developed to carry out ray-tracing and lens characterisation in Python. Previously TEMGYM Advanced has shown how to analyse the aberrations of analytical lens fields; this paper expands upon this work to demonstrate how to apply a suitable fitting method to discrete lens fields obtained via FEM methods so that the aberrations of real lens designs can be calculated. Each software platform used in this paper is freely available in the community and creates a free and viable alternative to commercial lens design packages.

3.
Ultramicroscopy ; 250: 113738, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080091

RESUMO

Characterisation of the electron beams trajectory in an electron microscope is possible in a few select commercial software packages, but these tools and their source code are not available in a free and accessible manner. This paper introduces the free and open-source software TEMGYM Advanced, which implements ray tracing methods that calculate the path of electrons through a magnetic or electrostatic lens and allow evaluation of the first-order properties and third-order geometric aberrations. Validation of the aberration coefficient calculations is performed by implementing two independent methods - the aberration integral and differential algebra (DA) methods and by comparing the results of each. This paper also demonstrates parallelised electron ray tracing through a series of magnetic components, which enables near real-time generation of a physically accurate beam-spot including aberrations and brings closer the realisation of a digital twin of an electron microscope. TEMGYM Advanced represents a valuable resource for the electron microscopy community, providing an accessible and open source means of characterising electron lenses. This software utilises the Python programming language to complement the growing ecosystem of free and open-source software within the electron microscopy community, and to facilitate the application of machine learning to an electron microscope digital twin for instrument automation. The software is available under GNU Public License number Three (GPL 3).

4.
ACS Appl Mater Interfaces ; 6(23): 20758-67, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491070

RESUMO

Thin and ultrathin polymer films combined with nanoparticles (NPs) are of significant interest as they are used in a host of industrial applications. In this paper we describe the stability of such films (hpoly ≤ 30 nm) to dewetting, specifically, how the development of a spinodal instability in a composite NP-polymer layer is controlled by the embedding of Au NPs. At working temperatures (T = 170 °C) above the polymer glass transition temperature (Tg ≈ 100 °C) the absence of Au NPs leads to film rupture by nucleation dewetting, while their presence over a large surface area enhances the development of a spinodal instability without destroying the film continuity. When the NPs embed, the surface undulations are suppressed. The dynamics change from an unstable to a stable state, and the thin composite NP-polymer layer returns to a flat configuration, while the wavelength of the pattern remains constant. Moreover, we demonstrate from a thermodynamic perspective that NPs will remain on the surface or embed in the polymer film depending on their free energy, which is determined by the NP interactions with the underlying polymer, the native SiOx layer, and the Si substrate.

5.
Phys Rev Lett ; 104(21): 214101, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20867104

RESUMO

We have studied here using high resolution resistance measurements the time and statistical behavior of abrupt resistance changes in a thin metal aluminum film undergoing electromigration. We reveal for the first time that early stage electromigration exhibits on-off intermittency. The intermittent resistance fluctuations are also shown to be scale invariant, an effect seen in the fluctuations of several physical systems including earthquakes, superconductor dynamics and stock markets. Finite size scaling of the resistance fluctuations demonstrates that they originate near a critical point.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016113, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658780

RESUMO

This work shows the relationship of the state variable rock-friction law proposed by Dieterich to the Carlson and Langer friction law commonly used in the Burridge-Knopoff (BK) model of earthquakes. Further to this, the Dieterich law is modified to allow slip rates of zero magnitude yielding a three parameter friction law that is included in the BK system. Dynamic phases of small scale and large scale events are found with a transition surface in the parameter space. Near this transition surface the event size distribution follows a power law with an exponent that varies as the transition is approached contrasting with the invariant exponent observed using the Carlson and Langer friction. This variability of the power-law exponent is consistent with the range of exponents measured in real earthquake systems and is more selective than the range observed in the Olami-Feder-Christensen model.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046115, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711886

RESUMO

Slider-block models are often used to simulate earthquake dynamics. However, the models' origins are more conceptual than analytical. This study uses Navier's equations of an elastic bulk to derive a one-dimensional slider-block model, the Burridge-Knopoff model. This model exhibits a critical phase transition by varying the friction parameter. Accurate analytical estimates are made of event size limits for the small scale, large scale, and intermediate dynamic phases. The absence of large scale quasiperiodic delocalized events is noted for the parameter set investigated here. The time intervals between large scale events are approximately exponentially distributed for the system in its critical state, in agreement with the theory of nonequilibrium critical systems and earthquake dynamics.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046124, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15903743

RESUMO

Criticality is a potential origin of the scale invariance observed in the Gutenberg-Richter law for earthquakes. In support of this hypothesis, the Burridge-Knopoff (BK) model of an earthquake fault system is known to exhibit a dynamic phase transition, but the critical nature of the transition is uncertain. Here it is shown that the BK model exhibits a dynamic transition from large-scale stick-slip to small-scale creep motion and through a finite size scaling analysis the critical nature of this transition is established. The order parameter describing the critical transition suggests that the Olami-Feder-Christensen model may be tuned to criticality through its assumptions describing the relaxation of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...